# R-snippets

R snippets for Sublimetext

## Details

## Installs

- Total 10K
- Win 5K
- Mac 4K
- Linux 2K

Apr 9 | Apr 8 | Apr 7 | Apr 6 | Apr 5 | Apr 4 | Apr 3 | Apr 2 | Apr 1 | Mar 31 | Mar 30 | Mar 29 | Mar 28 | Mar 27 | Mar 26 | Mar 25 | Mar 24 | Mar 23 | Mar 22 | Mar 21 | Mar 20 | Mar 19 | Mar 18 | Mar 17 | Mar 16 | Mar 15 | Mar 14 | Mar 13 | Mar 12 | Mar 11 | Mar 10 | Mar 9 | Mar 8 | Mar 7 | Mar 6 | Mar 5 | Mar 4 | Mar 3 | Mar 2 | Mar 1 | Feb 29 | Feb 28 | Feb 27 | Feb 26 | Feb 25 | Feb 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Windows | 0 | 1 | 2 | 2 | 2 | 1 | 2 | 4 | 2 | 2 | 3 | 1 | 1 | 4 | 1 | 3 | 4 | 2 | 1 | 2 | 4 | 2 | 1 | 5 | 2 | 0 | 3 | 0 | 2 | 1 | 7 | 5 | 1 | 0 | 0 | 4 | 3 | 2 | 3 | 1 | 1 | 3 | 2 | 4 | 2 | 2 |

Mac | 1 | 0 | 1 | 4 | 0 | 1 | 3 | 2 | 0 | 4 | 0 | 3 | 1 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 1 | 1 | 1 | 1 | 0 | 2 | 3 | 1 | 0 | 2 |

Linux | 0 | 1 | 5 | 2 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 3 | 0 | 0 | 1 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |

## Readme

- Source
- raw.githubusercontent.com

# R-snippets

This package includes a selection of R snippets for Sublimetext that I find useful when using R through SublimeREPL

Check out the project page at http://www.jvcasillas.com/code/projects/R-snippets

Just type the trigger and hit the tab key. For example…

```
lm
```

Expands to…

```
# load lme4 for mixed models
library(lme4)
# random intercept and random slope model
modelName <- lmer(DV ~ fixedFactor1 +* fixedFactor2 + (1 + randomSlope|randomInt), data=df)
summary(modelName)
```

## Main triggers

- “plot”: templates for plotting in base R
- “edit”: options useful for data cleansing and saving
- “desc”: descriptive statistics of data
- “ttest”: distinct types of t-test
- “aov”: distinct analysis of variance models
- “lm”: linear and logistic regression
- “lmem”: linear mixed effects models

## Extras

- “subset”: make subsets of a DF
- “read”: read/load/install data/packages into R
- “save”: save plots, dfs, tables, etc.
- “tikz”: template for creating R plots in LaTeX

**Note** All snippets have the following scopes:

```
source.r, text.html.markdown.knitr, text.tex.latex, text.html.markdown.rmarkdown
```

## To add

- knitr
- dplyr
- coursera