ctrl+shift+p filters: :st2 :st3 :win :osx :linux
Browse

R-snippets

by jvcasillas ALL

R snippets for Sublimetext

Labels snippets, R, statistics

Details

  • 2017.05.12.20.00.37
  • github.​com
  • github.​com
  • 3 years ago
  • 43 minutes ago
  • 6 years ago

Installs

  • Total 9K
  • Win 4K
  • Mac 3K
  • Linux 2K
Jan 25 Jan 24 Jan 23 Jan 22 Jan 21 Jan 20 Jan 19 Jan 18 Jan 17 Jan 16 Jan 15 Jan 14 Jan 13 Jan 12 Jan 11 Jan 10 Jan 9 Jan 8 Jan 7 Jan 6 Jan 5 Jan 4 Jan 3 Jan 2 Jan 1 Dec 31 Dec 30 Dec 29 Dec 28 Dec 27 Dec 26 Dec 25 Dec 24 Dec 23 Dec 22 Dec 21 Dec 20 Dec 19 Dec 18 Dec 17 Dec 16 Dec 15 Dec 14 Dec 13 Dec 12 Dec 11
Windows 0 4 1 3 3 1 2 3 2 5 3 4 5 2 1 3 2 3 1 3 1 3 0 1 1 2 2 0 0 1 4 4 2 0 2 1 2 2 1 1 2 2 0 1 4 6
Mac 1 0 0 0 4 0 1 2 0 0 4 3 3 1 0 0 3 1 1 0 0 0 0 1 0 1 0 0 0 0 2 5 2 2 1 2 0 0 2 1 0 0 0 3 0 2
Linux 0 1 1 0 2 3 1 3 0 1 1 1 0 0 0 1 3 0 2 0 2 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 2 1 2 0 0 1

Readme

Source
raw.​githubusercontent.​com

R-snippets

This package includes a selection of R snippets for Sublimetext that I find useful when using R through SublimeREPL

Check out the project page at http://www.jvcasillas.com/code/projects/R-snippets

Just type the trigger and hit the tab key. For example…

lm

Expands to…

# load lme4 for mixed models
library(lme4)

# random intercept and random slope model
modelName <- lmer(DV ~ fixedFactor1 +* fixedFactor2 + (1 + randomSlope|randomInt), data=df)
summary(modelName)

Main triggers

  • “plot”: templates for plotting in base R
  • “edit”: options useful for data cleansing and saving
  • “desc”: descriptive statistics of data
  • “ttest”: distinct types of t-test
  • “aov”: distinct analysis of variance models
  • “lm”: linear and logistic regression
  • “lmem”: linear mixed effects models

Extras

  • “subset”: make subsets of a DF
  • “read”: read/load/install data/packages into R
  • “save”: save plots, dfs, tables, etc.
  • “tikz”: template for creating R plots in LaTeX

Note All snippets have the following scopes:

source.r, text.html.markdown.knitr, text.tex.latex, text.html.markdown.rmarkdown

To add

  • knitr
  • dplyr
  • coursera