ctrl+shift+p filters: :st2 :st3 :win :osx :linux
Browse

Python Data Science Snippets

📊 Collection of Sublime Text snippets for data science and machine learning in Python (Imports, NumPy, Pandas, Matplotlib, Scikit-learn, Keras, PyTorch, etc)

Details

Installs

  • Total 3K
  • Win 2K
  • Mac 396
  • Linux 527
Dec 21 Dec 20 Dec 19 Dec 18 Dec 17 Dec 16 Dec 15 Dec 14 Dec 13 Dec 12 Dec 11 Dec 10 Dec 9 Dec 8 Dec 7 Dec 6 Dec 5 Dec 4 Dec 3 Dec 2 Dec 1 Nov 30 Nov 29 Nov 28 Nov 27 Nov 26 Nov 25 Nov 24 Nov 23 Nov 22 Nov 21 Nov 20 Nov 19 Nov 18 Nov 17 Nov 16 Nov 15 Nov 14 Nov 13 Nov 12 Nov 11 Nov 10 Nov 9 Nov 8 Nov 7 Nov 6
Windows 0 1 0 3 3 0 0 0 0 1 1 3 1 2 2 0 1 0 2 2 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 1 3 2 1 1 4
Mac 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linux 0 0 1 1 0 2 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 1 0

Readme

Source
raw.​githubusercontent.​com

📊 Python Data Science Snippets

Downloads Tag Repo size License

Python Data Science Snippets is a collection of Sublime Text snippets for data science and machine learning in Python.

💻 Installation

The easiest way to install Python Data Science Snippets is through Package Control. After it is enabled inside Sublime Text, open the command palette and find Package Control: Install Package and press ENTER. Then, find Python Data Science Snippets in the list. Press ENTER again, and this package is installed!

📈 Snippets

Imports

Import snippets start with i followed by the package/module's import alias.

Trigger Description
ikeras from tensorflow import keras
inp import numpy as np
ipd import pandas as pd
iplt import matplotlib.pyplot as plt
isklearn from sklearn.$1 import $2
isns import seaborn as sns
itf import tensorflow as tf
itorch import torch
inn from torch import nn
idl from torch.utils.data import DataLoader

NumPy

Trigger Description
arange np.arange
array np.array
linspace np.linspace
logspace np.logspace
ones np.ones
zeros np.zeros

Pandas

Trigger Description
apply df.apply
columns df.columns
describe df.describe
df pd.DataFrame
dropna df.dropna
fillna df.fillna
groupby df.groupby
head df.head
read_csv pd.read_csv
rename df.rename
reset_index df.reset_index
sample df.sample
ser pd.Series
tail df.tail
to_csv df.to_csv
to_datetime pd.to_datetime

Matplotlib

Trigger Description
annotate plt.annotate
bar_label plt.bar_label
bar plt.bar
barh plt.barh
fill_between plt.fill_between
hist plt.hist
imread plt.imread
imsave plt.imsave
imshow plt.imshow
legend plt.legend
pie plt.pie
plot plt.plot
savefig plt.savefig
scatter plt.scatter
show plt.show
stackplot plt.stackplot
subplot plt.subplot
subplots plt.subplots
suptitle plt.suptitle
text plt.text
tight_layout plt.tight_layout
title plt.title
xlabel plt.xlabel
xlim plt.xlim
ylabel plt.ylabel
ylim plt.ylim

Scikit-learn

Trigger Description
knn KNeighborsClassifier
linreg LinearRegression
logreg LogisticRegression
rfc RandomForestClassifier
tts train_test_split

Keras

Trigger Description
compile model.compile
evaluate model.evaluate
fit model.fit
layer keras.layers.layer
load_model keras.models.load_model
predict model.predict
save model.save
sequential keras.Sequential

PyTorch

Trigger Description
dataloader torch.utils.data.DataLoader
device torch.device (cuda/cpu)
module torch.nn.Module

The snippet files are in the snippets folder of this GitHub repository.