ctrl+shift+p filters: :st2 :st3 :win :osx :linux
Browse

Python Data Science Snippets

📊 Collection of Sublime Text snippets for data science and machine learning in Python (Imports, NumPy, Pandas, Matplotlib, Scikit-learn, Keras, PyTorch, etc)

Details

Installs

  • Total 2K
  • Win 2K
  • Mac 365
  • Linux 460
Jun 22 Jun 21 Jun 20 Jun 19 Jun 18 Jun 17 Jun 16 Jun 15 Jun 14 Jun 13 Jun 12 Jun 11 Jun 10 Jun 9 Jun 8 Jun 7 Jun 6 Jun 5 Jun 4 Jun 3 Jun 2 Jun 1 May 31 May 30 May 29 May 28 May 27 May 26 May 25 May 24 May 23 May 22 May 21 May 20 May 19 May 18 May 17 May 16 May 15 May 14 May 13 May 12 May 11 May 10 May 9 May 8
Windows 1 1 0 1 0 1 1 0 2 3 2 0 1 1 0 2 1 1 1 0 0 0 1 4 3 2 2 1 0 2 1 1 1 0 2 1 3 3 1 2 0 1 1 2 0 1
Mac 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 2 0 1 0 0 1 0 1 0 0 1 0 0
Linux 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 1 0

Readme

Source
raw.​githubusercontent.​com

📊 Python Data Science Snippets

Downloads Tag Repo size License

Python Data Science Snippets is a collection of Sublime Text snippets for data science and machine learning in Python.

💻 Installation

The easiest way to install Python Data Science Snippets is through Package Control. After it is enabled inside Sublime Text, open the command palette and find Package Control: Install Package and press ENTER. Then, find Python Data Science Snippets in the list. Press ENTER again, and this package is installed!

📈 Snippets

Imports

Import snippets start with i followed by the package/module's import alias.

Trigger Description
ikeras from tensorflow import keras
inp import numpy as np
ipd import pandas as pd
iplt import matplotlib.pyplot as plt
isklearn from sklearn.$1 import $2
isns import seaborn as sns
itf import tensorflow as tf
itorch import torch
inn from torch import nn
idl from torch.utils.data import DataLoader

NumPy

Trigger Description
arange np.arange
array np.array
linspace np.linspace
logspace np.logspace
ones np.ones
zeros np.zeros

Pandas

Trigger Description
apply df.apply
columns df.columns
describe df.describe
df pd.DataFrame
dropna df.dropna
fillna df.fillna
groupby df.groupby
head df.head
read_csv pd.read_csv
rename df.rename
reset_index df.reset_index
sample df.sample
ser pd.Series
tail df.tail
to_csv df.to_csv
to_datetime pd.to_datetime

Matplotlib

Trigger Description
annotate plt.annotate
bar_label plt.bar_label
bar plt.bar
barh plt.barh
fill_between plt.fill_between
hist plt.hist
imread plt.imread
imsave plt.imsave
imshow plt.imshow
legend plt.legend
pie plt.pie
plot plt.plot
savefig plt.savefig
scatter plt.scatter
show plt.show
stackplot plt.stackplot
subplot plt.subplot
subplots plt.subplots
suptitle plt.suptitle
text plt.text
tight_layout plt.tight_layout
title plt.title
xlabel plt.xlabel
xlim plt.xlim
ylabel plt.ylabel
ylim plt.ylim

Scikit-learn

Trigger Description
knn KNeighborsClassifier
linreg LinearRegression
logreg LogisticRegression
rfc RandomForestClassifier
tts train_test_split

Keras

Trigger Description
compile model.compile
evaluate model.evaluate
fit model.fit
layer keras.layers.layer
load_model keras.models.load_model
predict model.predict
save model.save
sequential keras.Sequential

PyTorch

Trigger Description
dataloader torch.utils.data.DataLoader
device torch.device (cuda/cpu)
module torch.nn.Module

The snippet files are in the snippets folder of this GitHub repository.