ctrl+shift+p filters: :st2 :st3 :win :osx :linux
Browse

Python Data Science Snippets

📊 Collection of Sublime Text snippets for data science and machine learning in Python (Imports, NumPy, Pandas, Matplotlib, Scikit-learn, Keras, PyTorch, etc)

Details

Installs

  • Total 674
  • Win 430
  • Mac 110
  • Linux 134
May 17 May 16 May 15 May 14 May 13 May 12 May 11 May 10 May 9 May 8 May 7 May 6 May 5 May 4 May 3 May 2 May 1 Apr 30 Apr 29 Apr 28 Apr 27 Apr 26 Apr 25 Apr 24 Apr 23 Apr 22 Apr 21 Apr 20 Apr 19 Apr 18 Apr 17 Apr 16 Apr 15 Apr 14 Apr 13 Apr 12 Apr 11 Apr 10 Apr 9 Apr 8 Apr 7 Apr 6 Apr 5 Apr 4 Apr 3 Apr 2
Windows 3 5 4 1 4 6 4 1 0 0 1 2 4 3 3 2 2 2 2 4 2 2 0 1 1 2 1 1 0 2 0 2 4 5 3 2 0 4 2 2 2 0 0 0 3 1
Mac 0 2 0 1 1 2 0 1 1 0 0 0 4 1 0 0 0 0 0 0 0 2 0 1 2 0 2 1 0 0 0 1 2 1 0 1 1 0 0 0 0 0 0 0 0 0
Linux 0 0 0 1 0 1 0 0 2 0 1 1 1 2 1 0 0 2 0 0 1 1 1 1 2 0 0 0 2 2 1 0 1 0 1 0 3 0 0 0 1 0 1 0 1 0

Readme

Source
raw.​githubusercontent.​com

📊 Python Data Science Snippets

Downloads Tag Repo size License

Python Data Science Snippets is a collection of Sublime Text snippets for data science and machine learning in Python.

💻 Installation

The easiest way to install Python Data Science Snippets is through Package Control. After it is enabled inside Sublime Text, open the command palette and find Package Control: Install Package and press ENTER. Then, find Python Data Science Snippets in the list. Press ENTER again, and this package is installed!

📈 Snippets

Imports

Import snippets start with i followed by the package's import alias.

Trigger Description
ikeras from tensorflow import keras
inp import numpy as np
ipd import pandas as pd
iplt import matplotlib.pyplot as plt
isklearn from sklearn.$1 import $2
isns import seaborn as sns
itf import tensorflow as tf
itorch import torch
inn from torch import nn
idl from torch.utils.data import DataLoader

NumPy

Trigger Description
arange np.arange
array np.array
linspace np.linspace
logspace np.logspace
ones np.ones
zeros np.zeros

Pandas

Trigger Description
columns df.columns
describe df.describe
df pd.DataFrame
head df.head
read_csv pd.read_csv
ser pd.Series
tail df.tail

Matplotlib

Trigger Description
bar plt.bar
legend plt.legend
pie plt.pie
plot plt.plot
scatter plt.scatter
show plt.show
subplots plt.subplots
title plt.title
xlabel plt.xlabel
ylabel plt.ylabel

Scikit-learn

Trigger Description
knn KNeighborsClassifier
linreg LinearRegression
logreg LogisticRegression
rfc RandomForestClassifier
tts train_test_split

Keras

Trigger Description
compile model.compile
fit model.fit
layer keras.layers.layer
load_model keras.models.load_model
save model.save
sequential keras.Sequential

PyTorch

Trigger Description
dataloader torch.utils.data.DataLoader
device torch.device (cuda/cpu)
module torch.nn.Module

The snippet files are in the snippets folder of this GitHub repository.